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Lecture overview

� Bayesian inference

� The normal model with known variance

� Linear regression

� Regularization priors

Slides at: https://mattiasvillani.com/news
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Likelihood function - normal data regression

� Normal data with known variance:

X1, ...,Xn|θ
iid∼ N(θ, σ2).

� Likelihood from independent observations: x1, ..., xn

p(x1, ..., xn|θ) =
n

∏
i=1

p(xi |θ) =
1

(2πσ2)n/2 exp

(
− 1
2σ2

n

∑
i=1

(xi − θ)2
)

∝ exp

(
− 1
2(σ2/n)

(θ − x̄)2
)

� Maximum likelihood: θ̂ = x̄ maximizes p(x1, ..., xn|θ).

� Given the data x1, ..., xn, plot p(x1, ..., xn|θ) as a function of θ.
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Am I really getting my 50Mbit/sec?

� My broadband provider promises me at least 50Mbit/sec.
� Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.
� Measurement errors: σ = 5 (±10Mbit with 95% probability)
� The likelihood function is proportional to N(x̄ , σ2/n) density.
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The likelihood function

� The mantra:
The likelihood function is
the probability of the observed data
considered as a function of the parameter.

� Likelihood function is NOT a probability distribution for θ.

� Statements like Pr(θ ≥ 50|data) makes no sense.

� Unless ...
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Uncertainty and subjective probability

� Pr(θ ≥ 50|data) only makes sense if θ is random.

� But θ may be a fixed natural constant?

� Bayesian: doesn’t matter if θ is fixed or random.

� Do You know the value of θ or not?

� p(θ) reflects Your knowledge/uncertainty about θ.

� Subjective probability.

� The statement Pr(10th decimal of π = 9) = 0.1 makes sense.
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Bayesian learning

� Bayesian learning about a model parameter θ:
I state your prior knowledge as a probability distribution p(θ).
I collect data x and form the likelihood function p(x|θ).
I combine prior knowledge p(θ) with data information p(x|θ).

� How to combine the two sources of information?

Bayes’ theorem
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Learning from data - Bayes’ theorem

� How to update from prior p(θ) to posterior p(θ|Data)?
� Bayes’ theorem for events A and B

p(A|B) = p(B |A)p(A)
p(B)

.

� Bayes’ Theorem for a model parameter θ

p(θ|Data) = p(Data|θ)p(θ)
p(Data)

.

� It is the prior p(θ) that takes us from p(Data|θ) to p(θ|Data).

� A probability distribution for θ is extremely useful:
I Predictions
I Decision making
I Regularization
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Great theorems make great tattoos

� Bayes theorem

p(θ|Data) = p(Data|θ)p(θ)
p(Data)

� All you need to know:

p(θ|Data) ∝ p(Data|θ)p(θ)
or

Posterior ∝ Likelihood · Prior
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Normal data, known variance - uniform prior

� Model
x1, ..., xn|θ, σ2 iid∼ N(θ, σ2).

� Prior
p(θ) ∝ c (a constant)

� Likelihood

p(x1, ..., xn|θ, σ2) = exp

[
− 1
2(σ2/n)

(θ − x̄)2
]

� Posterior
θ|x1, ..., xn ∼ N(x̄ , σ2/n)
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Normal data, known variance - normal prior

� Prior
θ ∼ N(µ0, τ2

0 )

� Posterior

p(θ|x1, ..., xn) ∝ p(x1, ..., xn|θ, σ2)p(θ)

∝ N(θ|µn, τ2
n ),

where
1
τ2
n

=
n

σ2 +
1
τ2
0
,

µn = wx̄ + (1− w)µ0,

and

w =
n

σ2

n
σ2 +

1
τ2
0

.

� Proof: complete the squares in the exponential.
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Download speed

� Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.

� Model: X1, ...,X5 ∼ N(θ, σ2).

� Assume σ = 5 (measurements can vary ±10MBit with 95%
probability)

� My prior: θ ∼ N(50, 52).
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Download speed n=1
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Download speed n=2
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Download speed n=3

Bayesian Linear Regression Bayesian Linear Regression



Download speed n=5
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Linear regression

� The linear regression model in matrix form

y
(n×1)

= Xβ
(n×k)(k×1)

+ ε
(n×1)

� Usually first column of X is the unit vector and β1 is the
intercept.

� Normal errors: ε i
iid∼ N(0, σ2), so ε ∼ N(0, σ2In).

� Likelihood
y|β, σ2,X ∼ N(Xβ, σ2In)

Bayesian Linear Regression Bayesian Linear Regression



Linear regression - uniform prior

� Standard non-informative prior: uniform on (β, log σ2)

p(β, σ2) ∝ σ−2

� Joint posterior of β and σ2:

β|σ2, y ∼ N
[
β̂, σ2(X′X)−1]

σ2|y ∼ Inv -χ2(n− k, s2)

where β̂ = (X′X)−1X′y and s2 = 1
n−k (y−Xβ̂)′(y−Xβ̂).

� Simulate from the joint posterior by simulating from
I p(σ2|y)
I p(β|σ2, y)

� Marginal posterior of β :

β|y ∼ tn−k
[
β̂, s2(X ′X )−1]
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Scaled inverse χ2 distribution

� Inverse gamma distribution.
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Linear regression - conjugate prior

� Joint prior for β and σ2

β|σ2 ∼ N
(
µ0, σ2Ω−1

0
)

σ2 ∼ Inv − χ2 (ν0, σ2
0
)

� Posterior

β|σ2, y ∼ N
[
µn, σ2Ω−1

n

]
σ2|y ∼ Inv − χ2 (νn, σ2

n

)
µn =

(
X′X+ Ω0

)−1 (X′Xβ̂ + Ω0µ0
)

Ωn = X′X+ Ω0

νn = ν0 + n

νnσ2
n = ν0σ2

0 +
(
y′y+ µ′0Ω0µ0 − µ′nΩnµn

)
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Ridge regression = normal prior

� Problem: too many covariates leads to over-fitting.
� Smoothness/shrinkage/regularization prior

βi |σ2 iid∼ N

(
0,

σ2

λ

)
� Larger λ gives smoother fit. Note: Ω0 = λI .
� Equivalent to penalized likelihood:

−2 · log p(β|σ2, y,X) ∝ (y − X β)T (y − X β) + λβ′β

� Posterior mean gives ridge regression estimator

β̃ =
(
X′X+ λI

)−1 X′y

� Shrinkage toward zero

As λ→ ∞, β̃→ 0

� When X′X = I

β̃ =
1

1+ λ
β̂
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Lasso regression = Laplace prior

� Lasso is equivalent to posterior mode under Laplace prior

βi |σ2 iid∼ Laplace
(
0,

σ2

λ

)

� Laplace prior:
I heavy tails
I many βi close to zero, but some βi can be very large.

� Normal prior
I light tails
I all βi ’s are similar in magnitude and no βi very large.
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Estimating the shrinkage

� Cross-validation is often used to determine the degree of
smoothness, λ.

� Bayesian: λ is unknown⇒ use a prior for λ.

� λ ∼ Inv -χ2(η0,λ0). The user specifies η0 and λ0.

� Hierarchical setup:

y|β,X ∼ N(Xβ, σ2In)

β|σ2,λ ∼ N
(
0, σ2λ−1Im

)
σ2 ∼ Inv − χ2(ν0, σ2

0 )

λ ∼ Inv -χ2(η0,λ0)
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Regression with estimated shrinkage

� The joint posterior of β, σ2 and λ is

β|σ2,λ, y ∼ N
(
µn,Ω−1

n

)

σ2|λ, y ∼ Inv − χ2 (νn, σ2
n

)

p(λ|y) ∝

√
|Ω0(λ)|

|XTX+ Ω0(λ)|

(
νnσ2

n (λ)

2

)−νn/2

· p(λ)

� Ω0(λ) = λIm, and p(λ) is the prior for λ.
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Polynomial regression

� Polynomial regression

f (xi ) = β0 + β1xi + β2x
2
i + ...+ βkx

k
i .

y = Xβ + ε,

where
X = (1, x , x2, ..., xk).

� Problem: higher order polynomials can overfit the data.

� Solution: shrink higher order coefficients harder:

β|σ2 ∼ N

0,


100 0 0 · · · 0
0 1

λ 0 · · · 0
0 0 1

2λ
...

...
. . .

0 0 0 · · · 1
kλ




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Finding the time for maximum

� Quadratic relationship between pain relief (y) and time (x)

y = β0 + β1x + β2x
2 + ε.

� At what time xmax is there maximal pain relief?

xmax = −β1/2β2

.
� Posterior distribution of xmax can be obtained by change of

variable. Cauchy-like.

� Easy to obtain marginal posterior p(xmax |y,X) by simulation:

I Simulate N coefficient vectors from the posterior β, σ2|y,X
I For each simulated β, compute xmax = −β1/2β2.
I Plot a histogram. Converges to p(xmax |y,X) as N → ∞.
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Finding the time for maximum
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Bayes is easy to use

� Substantially more complex models can be analyzed by
I Markov Chain Monte Carlo (MCMC) simulation
I Hamiltonian Monte Carlo (HMC) simulation
I Variational inference optimization

� Ongoing research on making Bayes more scalable to large data.
My own contributions: https://mattiasvillani.com/research

� Probabilistic programming languages (Stan) makes Bayes easy.

� Bayesian Learning course at SU:
https://github.com/mattiasvillani/BayesLearnCourse
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