Bayesian Linear Regression Guest lecture at KTH 2020

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

Bayesian inference

The normal model with known variance

Linear regression

Regularization priors

Slides at: https://mattiasvillani.com/news

Likelihood function - normal data regression

Normal data with known variance:

$$X_1, \ldots, X_n | \theta \stackrel{iid}{\sim} \mathrm{N}(\theta, \sigma^2).$$

Likelihood from independent observations: $x_1, ..., x_n$

$$p(x_1, \dots, x_n | \theta) = \prod_{i=1}^n p(x_i | \theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta)^2\right)$$
$$\propto \exp\left(-\frac{1}{2(\sigma^2/n)} (\theta - \bar{x})^2\right)$$

Maximum likelihood: $\hat{\theta} = \bar{x}$ maximizes $p(x_1, ..., x_n | \theta)$.

Given the data $x_1, ..., x_n$, plot $p(x_1, ..., x_n | \theta)$ as a function of θ .

Am I really getting my 50Mbit/sec?

My broadband provider promises me at least 50Mbit/sec.
Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.
Measurement errors: σ = 5 (±10Mbit with 95% probability)
The likelihood function is proportional to N(x̄, σ²/n) density.

The mantra:

The likelihood function is the probability of the observed data considered as a function of the parameter.

Likelihood function is NOT a probability distribution for θ .

Statements like $Pr(\theta \ge 50|data)$ makes no sense.

Unless ...

Uncertainty and subjective probability

- Pr($\theta \ge 50$ |data) only makes sense if θ is random.
- But θ may be a fixed natural constant?
- Bayesian: doesn't matter if θ is fixed or random.
- **Do You** know the value of θ or not?
- **p**(θ) reflects Your knowledge/uncertainty about θ .
- Subjective probability.
- The statement $\Pr(10$ th decimal of $\pi = 9) = 0.1$ makes sense.

Bayesian learning

Bayesian learning about a model parameter θ :

- ▶ state your prior knowledge as a probability distribution $p(\theta)$.
- **•** collect data **x** and form the likelihood function $p(\mathbf{x}|\theta)$.
- **combine** prior knowledge $p(\theta)$ with data information $p(\mathbf{x}|\theta)$.

How to combine the two sources of information?

Bayes' theorem

Learning from data - Bayes' theorem

How to update from prior p(θ) to posterior p(θ|Data)?
Bayes' theorem for events A and B

$$p(A|B) = rac{p(B|A)p(A)}{p(B)}$$

Bayes' Theorem for a model parameter heta

$$p(\theta|\textit{Data}) = \frac{p(\textit{Data}|\theta)p(\theta)}{p(\textit{Data})}$$

It is the prior $p(\theta)$ that takes us from $p(Data|\theta)$ to $p(\theta|Data)$.

A probability distribution for θ is extremely useful:

- Predictions
- Decision making
- Regularization

Great theorems make great tattoos

Bayes theorem

$$p(\theta|Data) = rac{p(Data| heta)p(heta)}{p(Data)}$$

All you need to know:

 $p(\theta|Data) \propto p(Data|\theta)p(\theta)$

or

 $\mathsf{Posterior} \propto \mathsf{Likelihood} \cdot \mathsf{Prior}$

Bayesian Linear Regression

Normal data, known variance - uniform prior

Model

$$x_{1}, ..., x_{n} | \theta, \sigma^{2} \stackrel{iid}{\sim} N(\theta, \sigma^{2}).$$
Prior

$$p(\theta) \propto c \text{ (a constant)}$$
Likelihood

$$p(x_{1}, ..., x_{n} | \theta, \sigma^{2}) = \exp \left[-\frac{1}{2(\sigma^{2}/n)}(\theta - \bar{x})^{2}\right]$$
Posterior

$$\theta | x_{1}, ..., x_{n} \sim N(\bar{x}, \sigma^{2}/n)$$

Normal data, known variance - normal prior

Prior

$$heta \sim N(\mu_0, au_0^2)$$

Posterior

$$p(\theta|x_1, ..., x_n) \propto p(x_1, ..., x_n|\theta, \sigma^2)p(\theta)$$

$$\propto N(\theta|\mu_n, \tau_n^2),$$

where

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2},$$
$$\mu_n = w\bar{x} + (1 - w)\mu_0,$$

and

$$w = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}.$$

Proof: complete the squares in the exponential.

Bayesian Linear Regression

Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.

Model:
$$X_1, ..., X_5 \sim N(\theta, \sigma^2)$$
.

Assume $\sigma = 5$ (measurements can vary ± 10 MBit with 95% probability)

• My prior: $\theta \sim N(50, 5^2)$.

Download speed data: x=(22.42)

Download speed data: x=(22.42, 34.01)

Bayesian Linear Regression Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression

Linear regression

The linear regression model in matrix form

$$\mathbf{y}_{(n\times 1)} = \mathbf{X}\boldsymbol{\beta}_{(n\times k)(k\times 1)} + \boldsymbol{\varepsilon}_{(n\times 1)}$$

Usually first column of **X** is the unit vector and β₁ is the intercept.

Normal errors:
$$\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$
, so $\varepsilon \sim N(0, \sigma^2 I_n)$.

Likelihood

$$\mathbf{y}|\boldsymbol{\beta},\sigma^2,\mathbf{X}\sim N(\mathbf{X}\boldsymbol{\beta},\sigma^2\boldsymbol{I}_n)$$

Linear regression - uniform prior

Standard non-informative prior: uniform on $(\beta, \log \sigma^2)$

 $\mathbf{p}(\boldsymbol{\beta},\sigma^2) \propto \sigma^{-2}$

Joint posterior of β and σ^2 :

$$\begin{array}{ll} \beta | \sigma^2, \mathbf{y} & \sim & \mathcal{N} \left[\hat{\beta}, \sigma^2 (\mathbf{X}' \mathbf{X})^{-1} \right] \\ \sigma^2 | \mathbf{y} & \sim & \mathit{Inv-}\chi^2(n-k, s^2) \end{array}$$

where $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ and $s^2 = \frac{1}{n-k}(\mathbf{y} - \mathbf{X}\hat{\beta})'(\mathbf{y} - \mathbf{X}\hat{\beta}).$

Simulate from the joint posterior by simulating from

$$p(\sigma^2|\mathbf{y}) \\ p(\beta|\sigma^2,\mathbf{y})$$

Marginal posterior of β :

$$\beta |\mathbf{y} \sim t_{n-k} \left[\hat{\beta}, s^2 (X'X)^{-1}\right]$$

Scaled inverse χ^2 distribution

Inverse gamma distribution.

Bayesian Linear Regression Bayesian Linear Regression

Linear regression - conjugate prior

Joint prior for β and σ^2

$$\begin{split} \beta | \sigma^2 &\sim \textit{N} \left(\mu_0, \sigma^2 \Omega_0^{-1} \right) \\ \sigma^2 &\sim \textit{Inv} - \chi^2 \left(\nu_0, \sigma_0^2 \right) \end{split}$$

Posterior

$$\begin{aligned} \beta | \sigma^2, \mathbf{y} &\sim N\left[\mu_n, \sigma^2 \Omega_n^{-1}\right] \\ \sigma^2 | \mathbf{y} &\sim \textit{Inv} - \chi^2\left(\nu_n, \sigma_n^2\right) \end{aligned}$$

$$\mu_n = \left(\mathbf{X}'\mathbf{X} + \Omega_0\right)^{-1} \left(\mathbf{X}'\mathbf{X}\hat{\beta} + \Omega_0\mu_0\right)$$
$$\Omega_n = \mathbf{X}'\mathbf{X} + \Omega_0$$
$$\nu_n = \nu_0 + n$$
$$\nu_n\sigma_n^2 = \nu_0\sigma_0^2 + \left(\mathbf{y}'\mathbf{y} + \mu'_0\Omega_0\mu_0 - \mu'_n\Omega_n\mu_n\right)$$

Bayesian Linear Regression

Ridge regression = normal prior

Problem: too many covariates leads to over-fitting.
 Smoothness/shrinkage/regularization prior

$$\beta_i | \sigma^2 \stackrel{iid}{\sim} N\left(0, \frac{\sigma^2}{\lambda}\right)$$

Larger λ gives smoother fit. Note: Ω₀ = λ*I*.
Equivalent to penalized likelihood:

$$-2 \cdot \log p(\beta | \sigma^2, \mathbf{y}, \mathbf{X}) \propto (y - X\beta)^T (y - X\beta) + \lambda \beta' \beta$$

Posterior mean gives ridge regression estimator

$$ilde{eta} = ig({f X}' {f X} + \lambda {f I} ig)^{-1} {f X}' {f y}$$

Shrinkage toward zero

As
$$\lambda
ightarrow \infty$$
, $ilde{eta}
ightarrow 0$

When $\mathbf{X}'\mathbf{X} = I$

$$ilde{eta} = rac{1}{1+\lambda} \hat{eta}$$

Bayesian Linear Regression

Lasso regression = Laplace prior

Lasso is equivalent to posterior mode under Laplace prior

Laplace prior:

heavy tails

► many β_i close to zero, but some β_i can be very large. Normal prior

light tails

> all β_i 's are similar in magnitude and no β_i very large.

Bayesian Linear Regression

Estimating the shrinkage

- Cross-validation is often used to determine the degree of smoothness, λ .
- Bayesian: λ is unknown \Rightarrow use a prior for λ .
- $\lambda \sim Inv \chi^2(\eta_0, \lambda_0)$. The user specifies η_0 and λ_0 .

Hierarchical setup:

$$\begin{aligned} \mathbf{y}|\boldsymbol{\beta}, \mathbf{X} &\sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}_n) \\ \boldsymbol{\beta}|\sigma^2, \lambda &\sim \mathcal{N}\left(0, \sigma^2 \lambda^{-1} \boldsymbol{I}_m\right) \\ \sigma^2 &\sim \mathit{Inv} - \chi^2(\nu_0, \sigma_0^2) \\ \lambda &\sim \mathit{Inv} \cdot \chi^2(\eta_0, \lambda_0) \end{aligned}$$

Regression with estimated shrinkage

The joint posterior of β , σ^2 and λ is

$$eta | \sigma^2$$
, λ , $\mathbf{y} \sim N\left(\mu_n, \Omega_n^{-1}
ight)$

$$\sigma^2 | \lambda, \mathbf{y} \sim \mathit{Inv} - \chi^2 \left(\nu_n, \sigma_n^2
ight)$$

$$p(\lambda|\mathbf{y}) \propto \sqrt{\frac{|\Omega_0(\lambda)|}{|\mathbf{X}^{\mathsf{T}}\mathbf{X} + \Omega_0(\lambda)|}} \left(\frac{\nu_n \sigma_n^2(\lambda)}{2}\right)^{-\nu_n/2} \cdot p(\lambda)$$

 $\square \Omega_0(\lambda) = \lambda I_m, \text{ and } p(\lambda) \text{ is the prior for } \lambda.$

Polynomial regression

Polynomial regression

$$f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k.$$
$$\mathbf{y} = \mathbf{X}\beta + \varepsilon,$$

where

$$\mathbf{X} = (1, x, x^2, \dots, x^k).$$

Problem: higher order polynomials can overfit the data.

Solution: shrink higher order coefficients harder:

$$\beta | \sigma^2 \sim N \left[0, \begin{pmatrix} 100 & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda} & 0 & \cdots & 0 \\ 0 & 0 & \frac{1}{2\lambda} & & \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \cdots & \frac{1}{k\lambda} \end{pmatrix} \right]$$

Finding the time for maximum

Quadratic relationship between pain relief (y) and time (x)

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon_1$$

At what time x_{max} is there maximal pain relief?

$$x_{max} = -\beta_1/2\beta_2$$

Posterior distribution of *x_{max}* can be obtained by change of variable. Cauchy-like.

Easy to obtain marginal posterior $p(x_{max}|\mathbf{y}, \mathbf{X})$ by simulation:

- Simulate N coefficient vectors from the posterior β , $\sigma^2 | \mathbf{y}, \mathbf{X}$
- For each simulated β , compute $x_{max} = -\beta_1/2\beta_2$.
- ▶ Plot a histogram. Converges to $p(x_{max}|\mathbf{y}, \mathbf{X})$ as $N \to \infty$.

Finding the time for maximum

Bayesian Linear Regression

Bayes is easy to use

Substantially more complex models can be analyzed by

- Markov Chain Monte Carlo (MCMC) simulation
- Hamiltonian Monte Carlo (HMC) simulation
- Variational inference optimization

Ongoing research on making Bayes more scalable to large data. My own contributions: https://mattiasvillani.com/research

Probabilistic programming languages (Stan) makes Bayes easy.

Bayesian Learning course at SU: https://github.com/mattiasvillani/BayesLearnCourse