# Bayesian Linear Regression Guest lecture at KTH 2020 

Mattias Villani<br>Department of Statistics<br>Stockholm University<br>Department of Computer and Information Science<br>Linköping University



## Lecture overview

■ Bayesian inference

- The normal model with known variance
- Linear regression
- Regularization priors

Slides at: https://mattiasvillani.com/news

## Likelihood function - normal data regression

- Normal data with known variance:

$$
X_{1}, \ldots, X_{n} \mid \theta \stackrel{i i d}{\sim} \mathrm{~N}\left(\theta, \sigma^{2}\right)
$$

- Likelihood from independent observations: $x_{1}, \ldots, x_{n}$

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n} \mid \theta\right) & =\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right) \\
& \propto \exp \left(-\frac{1}{2\left(\sigma^{2} / n\right)}(\theta-\bar{x})^{2}\right)
\end{aligned}
$$

$\square$ Maximum likelihood: $\hat{\theta}=\bar{x}$ maximizes $p\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.
$\square$ Given the data $x_{1}, \ldots, x_{n}$, plot $p\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ as a function of $\theta$.

## Am I really getting my 50Mbit/sec?

$\square$ My broadband provider promises me at least 50Mbit/sec.
Data: $\mathrm{x}=(22.42,34.01,35.04,38.74,25.15) \mathrm{Mbit} / \mathrm{sec}$.
Measurement errors: $\sigma=5$ ( $\pm 10 \mathrm{Mbit}$ with $95 \%$ probability)
The likelihood function is proportional to $\mathrm{N}\left(\bar{x}, \sigma^{2} / n\right)$ density.


## The likelihood function

- The mantra:

The likelihood function is the probability of the observed data considered as a function of the parameter.

Likelihood function is NOT a probability distribution for $\theta$.
Statements like $\operatorname{Pr}(\theta \geq 50 \mid$ data $)$ makes no sense.

- Unless ...


## Uncertainty and subjective probability

- $\operatorname{Pr}(\theta \geq 50 \mid$ data $)$ only makes sense if $\theta$ is random.
$\square$ But $\theta$ may be a fixed natural constant?
Bayesian: doesn't matter if $\theta$ is fixed or random.
Do You know the value of $\theta$ or not?
$\square(\theta)$ reflects Your knowledge/uncertainty about $\theta$.
- Subjective probability.
$\square$ The statement $\operatorname{Pr}(10$ th decimal of $\pi=9)=0.1$ makes sense.



## Bayesian learning

- Bayesian learning about a model parameter $\theta$ :
- state your prior knowledge as a probability distribution $p(\theta)$.
- collect data $\mathbf{x}$ and form the likelihood function $p(\mathbf{x} \mid \theta)$.
- combine prior knowledge $p(\theta)$ with data information $p(\mathbf{x} \mid \theta)$.
$\square$ How to combine the two sources of information?


## Bayes' theorem



## Learning from data - Bayes' theorem

$\square$ How to update from prior $p(\theta)$ to posterior $p(\theta \mid$ Data $)$ ?
$\square$ Bayes' theorem for events $A$ and $B$

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)}
$$

- Bayes' Theorem for a model parameter $\theta$

$$
p(\theta \mid \text { Data })=\frac{p(\text { Data } \mid \theta) p(\theta)}{p(\text { Data })}
$$

- It is the prior $p(\theta)$ that takes us from $p($ Data $\mid \theta)$ to $p(\theta \mid$ Data $)$.

A probability distribution for $\theta$ is extremely useful:

- Predictions
- Decision making
- Regularization


## Great theorems make great tattoos

Bayes theorem

$$
p(\theta \mid \text { Data })=\frac{p(\text { Data } \mid \theta) p(\theta)}{p(\text { Data })}
$$

All you need to know:

$$
p(\theta \mid \text { Data }) \propto p(\text { Data } \mid \theta) p(\theta)
$$

or

$$
\text { Posterior } \propto \text { Likelihood • Prior }
$$



## Normal data, known variance - uniform prior

- Model

$$
x_{1}, \ldots, x_{n} \mid \theta, \sigma^{2} \stackrel{i i d}{\sim} N\left(\theta, \sigma^{2}\right)
$$

$\square$ Prior

$$
p(\theta) \propto c(\text { a constant })
$$

■ Likelihood

$$
p\left(x_{1}, \ldots, x_{n} \mid \theta, \sigma^{2}\right)=\exp \left[-\frac{1}{2\left(\sigma^{2} / n\right)}(\theta-\bar{x})^{2}\right]
$$

■ Posterior

$$
\theta \mid x_{1}, \ldots, x_{n} \sim N\left(\bar{x}, \sigma^{2} / n\right)
$$

## Normal data, known variance - normal prior

- Prior

$$
\theta \sim N\left(\mu_{0}, \tau_{0}^{2}\right)
$$

- Posterior

$$
\begin{aligned}
p\left(\theta \mid x_{1}, \ldots, x_{n}\right) & \propto p\left(x_{1}, \ldots, x_{n} \mid \theta, \sigma^{2}\right) p(\theta) \\
& \propto N\left(\theta \mid \mu_{n}, \tau_{n}^{2}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\frac{1}{\tau_{n}^{2}}=\frac{n}{\sigma^{2}}+\frac{1}{\tau_{0}^{2}} \\
\mu_{n}=w \bar{x}+(1-w) \mu_{0}
\end{gathered}
$$

and

$$
w=\frac{\frac{n}{\sigma^{2}}}{\frac{n}{\sigma^{2}}+\frac{1}{\tau_{0}^{2}}} .
$$

- Proof: complete the squares in the exponential.


## Download speed

$\square$ Data: $x=(22.42,34.01,35.04,38.74,25.15) \mathrm{Mbit} / \mathrm{sec}$.

Model: $X_{1}, \ldots, X_{5} \sim N\left(\theta, \sigma^{2}\right)$.
$\square$ Assume $\sigma=5$ (measurements can vary $\pm 10 \mathrm{MBit}$ with $95 \%$ probability)

My prior: $\theta \sim N\left(50,5^{2}\right)$.

## Download speed $\mathrm{n}=1$

Download speed data: $x=(22.42)$


## Download speed $n=2$

Download speed data: $x=(22.42,34.01)$


## Download speed $n=3$

Download speed data: $\mathbf{x}=(22.42,34.01,35.04)$


## Download speed $\mathrm{n}=5$

Download speed data: $x=(22.42,34.01,35.04,38.74,25.15)$


## Linear regression

The linear regression model in matrix form

$$
\underset{(n \times 1)}{\mathbf{y}}=\underset{(n \times k)(k \times 1)}{\mathrm{X} \beta}+\underset{(n \times 1)}{\varepsilon}
$$

- Usually first column of $\mathbf{X}$ is the unit vector and $\beta_{1}$ is the intercept.
$\square$ Normal errors: $\varepsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$, so $\varepsilon \sim N\left(0, \sigma^{2} I_{n}\right)$.

■ Likelihood

$$
\mathbf{y} \mid \beta, \sigma^{2}, \mathbf{X} \sim N\left(\mathbf{X} \beta, \sigma^{2} I_{n}\right)
$$

## Linear regression - uniform prior

$\square$ Standard non-informative prior: uniform on $\left(\beta, \log \sigma^{2}\right)$

$$
p\left(\beta, \sigma^{2}\right) \propto \sigma^{-2}
$$

- Joint posterior of $\beta$ and $\sigma^{2}$ :

$$
\begin{aligned}
\beta \mid \sigma^{2}, \mathbf{y} & \sim N\left[\hat{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right] \\
\sigma^{2} \mid \mathbf{y} & \sim \operatorname{Inv}-\chi^{2}\left(n-k, s^{2}\right)
\end{aligned}
$$

where $\hat{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ and $s^{2}=\frac{1}{n-k}(\mathbf{y}-\mathbf{X} \hat{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \hat{\beta})$.
$\square$ Simulate from the joint posterior by simulating from
$>p\left(\sigma^{2} \mid \mathbf{y}\right)$
$-p\left(\beta \mid \sigma^{2}, \mathbf{y}\right)$

- Marginal posterior of $\beta$ :

$$
\beta \mid \mathbf{y} \sim t_{n-k}\left[\hat{\beta}, s^{2}\left(X^{\prime} X\right)^{-1}\right]
$$

## Scaled inverse $\chi^{2}$ distribution


$\square$ Inverse gamma distribution.

## Linear regression - conjugate prior

- Joint prior for $\beta$ and $\sigma^{2}$

$$
\begin{aligned}
\beta \mid \sigma^{2} & \sim N\left(\mu_{0}, \sigma^{2} \Omega_{0}^{-1}\right) \\
\sigma^{2} & \sim \operatorname{Inv}-\chi^{2}\left(v_{0}, \sigma_{0}^{2}\right)
\end{aligned}
$$

■ Posterior

$$
\begin{aligned}
& \beta \mid \sigma^{2}, \mathbf{y} \sim N\left[\mu_{n}, \sigma^{2} \Omega_{n}^{-1}\right] \\
& \sigma^{2} \mid \mathbf{y} \sim \operatorname{Inv}-\chi^{2}\left(v_{n}, \sigma_{n}^{2}\right) \\
& \mu_{n}=\left(\mathbf{X}^{\prime} \mathbf{X}+\Omega_{0}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{X} \hat{\beta}+\Omega_{0} \mu_{0}\right) \\
& \Omega_{n}= \mathbf{X}^{\prime} \mathbf{X}+\Omega_{0} \\
& v_{n}= v_{0}+n \\
& v_{n} \sigma_{n}^{2}= v_{0} \sigma_{0}^{2}+\left(\mathbf{y}^{\prime} \mathbf{y}+\mu_{0}^{\prime} \Omega_{0} \mu_{0}-\mu_{n}^{\prime} \Omega_{n} \mu_{n}\right)
\end{aligned}
$$

## Ridge regression $=$ normal prior

- Problem: too many covariates leads to over-fitting.
- Smoothness/shrinkage/regularization prior

$$
\beta_{i} \left\lvert\, \sigma^{2} \stackrel{i i d}{\sim} N\left(0, \frac{\sigma^{2}}{\lambda}\right)\right.
$$

$\square$ Larger $\lambda$ gives smoother fit. Note: $\Omega_{0}=\lambda /$.

- Equivalent to penalized likelihood:

$$
-2 \cdot \log p\left(\beta \mid \sigma^{2}, \mathbf{y}, \mathbf{X}\right) \propto(y-X \beta)^{T}(y-X \beta)+\lambda \beta^{\prime} \beta
$$

- Posterior mean gives ridge regression estimator

$$
\tilde{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}+\lambda I\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

$\square$ Shrinkage toward zero

$$
\text { As } \lambda \rightarrow \infty, \tilde{\beta} \rightarrow 0
$$

When $\mathbf{X}^{\prime} \mathbf{X}=I$

$$
\tilde{\beta}=\frac{1}{1+\lambda} \hat{\beta}
$$

## Lasso regression $=$ Laplace prior

- Lasso is equivalent to posterior mode under Laplace prior

$$
\beta_{i} \mid \sigma^{2} \stackrel{i i d}{\sim} \text { Laplace }\left(0, \frac{\sigma^{2}}{\lambda}\right)
$$



- Laplace prior:
- heavy tails
- many $\beta_{i}$ close to zero, but some $\beta_{i}$ can be very large.
- Normal prior
- light tails
- all $\beta_{i}$ 's are similar in magnitude and no $\beta_{i}$ very large.


## Estimating the shrinkage

- Cross-validation is often used to determine the degree of smoothness, $\lambda$.
$\square$ Bayesian: $\lambda$ is unknown $\Rightarrow$ use a prior for $\lambda$.
$\square \lambda \sim \operatorname{Inv}-\chi^{2}\left(\eta_{0}, \lambda_{0}\right)$. The user specifies $\eta_{0}$ and $\lambda_{0}$.
- Hierarchical setup:

$$
\begin{aligned}
\mathbf{y} \mid \beta, \mathbf{X} & \sim N\left(\mathbf{X} \beta, \sigma^{2} I_{n}\right) \\
\beta \mid \sigma^{2}, \lambda & \sim N\left(0, \sigma^{2} \lambda^{-1} I_{m}\right) \\
\sigma^{2} & \sim \operatorname{In} v-\chi^{2}\left(v_{0}, \sigma_{0}^{2}\right) \\
\lambda & \sim \operatorname{In} v-\chi^{2}\left(\eta_{0}, \lambda_{0}\right)
\end{aligned}
$$

## Regression with estimated shrinkage

The joint posterior of $\beta, \sigma^{2}$ and $\lambda$ is

$$
\begin{gathered}
\beta \mid \sigma^{2}, \lambda, \mathbf{y} \sim N\left(\mu_{n}, \Omega_{n}^{-1}\right) \\
\sigma^{2} \mid \lambda, \mathbf{y} \sim \operatorname{Inv}-\chi^{2}\left(v_{n}, \sigma_{n}^{2}\right) \\
p(\lambda \mid \mathbf{y}) \propto \sqrt{\frac{\left|\Omega_{0}(\lambda)\right|}{\left|\mathbf{X}^{T} \mathbf{X}+\Omega_{0}(\lambda)\right|}}\left(\frac{v_{n} \sigma_{n}^{2}(\lambda)}{2}\right)^{-v_{n} / 2} \cdot p(\lambda)
\end{gathered}
$$

$\Omega_{0}(\lambda)=\lambda I_{m}$, and $p(\lambda)$ is the prior for $\lambda$.

## Polynomial regression

- Polynomial regression

$$
\begin{gathered}
f\left(x_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{k} x_{i}^{k} \\
\mathbf{y}=\mathbf{X} \beta+\varepsilon
\end{gathered}
$$

where

$$
\mathbf{X}=\left(1, x, x^{2}, \ldots, x^{k}\right)
$$

- Problem: higher order polynomials can overfit the data.
- Solution: shrink higher order coefficients harder:

$$
\beta \left\lvert\, \sigma^{2} \sim N\left[0,\left(\begin{array}{ccccc}
100 & 0 & 0 & \cdots & 0 \\
0 & \frac{1}{\lambda} & 0 & \cdots & 0 \\
0 & 0 & \frac{1}{2 \lambda} & & \\
\vdots & \vdots & & \ddots & \\
0 & 0 & 0 & \cdots & \frac{1}{k \lambda}
\end{array}\right)\right]\right.
$$

## Finding the time for maximum

$\square$ Quadratic relationship between pain relief (y) and time (x)

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\varepsilon
$$

$\square$ At what time $x_{\max }$ is there maximal pain relief?

$$
x_{\max }=-\beta_{1} / 2 \beta_{2}
$$

$\square$ Posterior distribution of $x_{\max }$ can be obtained by change of variable. Cauchy-like.
$\square$ Easy to obtain marginal posterior $p\left(x_{\max } \mid \mathbf{y}, \mathbf{X}\right)$ by simulation:

- Simulate $N$ coefficient vectors from the posterior $\beta, \sigma^{2} \mid \mathbf{y}, \mathbf{X}$
$\Rightarrow$ For each simulated $\beta$, compute $x_{\text {max }}=-\beta_{1} / 2 \beta_{2}$.
- Plot a histogram. Converges to $p\left(x_{\max } \mid \mathbf{y}, \mathbf{X}\right)$ as $N \rightarrow \infty$.


## Finding the time for maximum



## Bayes is easy to use

- Substantially more complex models can be analyzed by
- Markov Chain Monte Carlo (MCMC) simulation
- Hamiltonian Monte Carlo (HMC) simulation
- Variational inference optimization

Ongoing research on making Bayes more scalable to large data. My own contributions: https://mattiasvillani.com/research

- Probabilistic programming languages (Stan) makes Bayes easy.
- Bayesian Learning course at SU: https://github.com/mattiasvillani/BayesLearnCourse

